Phosphorus applications adjusted to optimal crop yields can help sustain global phosphorus reserves

  • Elser, J. J. & Haygarth, P. M. Phosphorus: Past and Future (Oxford Univ. Press, 2020).

  • Lee, R. The outlook for population growth. Science 333, 569–573 (2011).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Mogollón, J. M. et al. More efficient phosphorus use can avoid cropland expansion. Nat. Food 2, 509–518 (2021).

    Article 
    PubMed 

    Google Scholar 

  • Haygarth, P. M. & Rufino, M. C. Local solutions to global phosphorus imbalances. Nat. Food 2, 459–460 (2021).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Mueller, N. D. et al. Closing yield gaps through nutrient and water management. Nature 490, 254–257 (2012).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar 

  • Lun, F. et al. Global and regional phosphorus budgets in agricultural systems and their implications for phosphorus-use efficiency. Earth Syst. Sci. Data 10, 1–18 (2018).

    Article 
    ADS 

    Google Scholar 

  • MacDonald, G. K., Bennett, E. M., Potter, P. A. & Ramankutty, N. Agronomic phosphorus imbalances across the world’s croplands. Proc. Natl Acad. Sci. USA 108, 3086–3091 (2011).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Sattari, S. Z., Bouwman, A. F., Martinez Rodríguez, R., Beusen, A. H. W. & van Ittersum, M. K. Negative global phosphorus budgets challenge sustainable intensification of grasslands. Nat. Commun. 7, 10696 (2016).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Bouwman, A. F. et al. Lessons from temporal and spatial patterns in global use of N and P fertilizer on cropland. Sci. Rep. 7, 40366 (2017).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Hengl, T. et al. Soil nutrient maps of sub-Saharan Africa: assessment of soil nutrient content at 250 m spatial resolution using machine learning. Nutr. Cycling Agroecosyst. 109, 77–102 (2017).

    Article 
    CAS 

    Google Scholar 

  • Ballabio, C. et al. Mapping LUCAS topsoil chemical properties at European scale using Gaussian process regression. Geoderma 355, 113912 (2019).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • He, X. et al. Global patterns and drivers of soil total phosphorus concentration. Earth Syst. Sci. Data Discuss. 13, 5831–5846 (2021).

    Article 
    ADS 

    Google Scholar 

  • Hou, E., Tan, X., Heenan, M. & Wen, D. A global dataset of plant available and unavailable phosphorus in natural soils derived by Hedley method. Sci. Data 5, 180166 (2018).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Zhang, J. et al. Spatiotemporal dynamics of soil phosphorus and crop uptake in global cropland during the 20th century. Biogeosciences 14, 2055–2068 (2017).

    Article 
    ADS 

    Google Scholar 

  • Ringeval, B. et al. Phosphorus in agricultural soils: drivers of its distribution at the global scale. Glob. Change Biol. 23, 3418–3432 (2017).

    Article 
    ADS 

    Google Scholar 

  • Sattari, S. Z., Bouwman, A. F., Giller, K. E. & van Ittersum, M. K. Residual soil phosphorus as the missing piece in the global phosphorus crisis puzzle. Proc. Natl Acad. Sci. USA 109, 6348–6353 (2012).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Alewell, C. et al. Global phosphorus shortage will be aggravated by soil erosion. Nat. Commun. 11, 4546 (2020).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Grogan, D., Frolking, S., Wisser, D., Prusevich, A. & Glidden, S. Global gridded crop harvested area, production, yield, and monthly physical area data circa 2015. Sci. Data 9, 15 (2022).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Land Cover 2010 (European Space Agency, 2014); https://www.esa.int/ESA_Multimedia/Images/2014/10/Land_cover_2010

  • McDowell, R. W., Noble, A., Pletnyakov, P. & Haygarth, P. M. A global database of soil plant available phosphorus. Sci. Data 10, 125 (2023).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Daneshgar, S., Callegari, A., Capodaglio, A. G. & Vaccari, D. The potential phosphorus crisis: resource conservation and possible escape technologies: a review. Resources 7, 37 (2018).

    Article 

    Google Scholar 

  • Nedelciu, C. E., Ragnarsdottir, K. V., Schlyter, P. & Stjernquist, I. Global phosphorus supply chain dynamics: assessing regional impact to 2050. Glob. Food Sec. 26, 100426 (2020).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Scholz, R. W. & Wellmer, F. W. Endangering the integrity of science by misusing unvalidated models and untested assumptions as facts: general considerations and the mineral and phosphorus scarcity fallacy. Sustain. Sci. 16, 2069–2086 (2021).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Lu, C. & Tian, H. Global nitrogen and phosphorus fertilizer use for agriculture production in the past half century: shifted hot spots and nutrient imbalance. Earth Syst. Sci. Data 9, 181–192 (2017).

    Article 
    ADS 

    Google Scholar 

  • Mineral Commodity Summaries, January 2021: Phosphate Rock 122–123 (US Geological Survey, 2021).

  • Robinson, T. P. et al. Mapping the global distribution of livestock. PLoS ONE 9, e96084 (2014).

    Article 
    ADS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Monfreda, C., Ramankutty, N. & Foley, J. A. Farming the planet: 2. Geographic distribution of crop areas, yields, physiological types, and net primary production in the year 2000. Glob. Biogeochem. Cycles 22, GB1022 (2008).

  • Batjes, N. H. Global Distribution of Soil Phosphorus Retention Potential (ISRIC Wageningen, 2011).

  • Ros, M. B. H. et al. Towards optimal use of phosphorus fertiliser. Sci. Rep. 10, 17804 (2020).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Roy, E. D. et al. The phosphorus cost of agricultural intensification in the tropics. Nat. Plants 2, 16043 (2016).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Kok, D. J. D. et al. Global phosphorus recovery from wastewater for agricultural reuse. Hydrol. Earth Syst. Sci. 22, 5781–5799 (2018).

    Article 
    ADS 

    Google Scholar 

  • Yang, Q. et al. Spatiotemporal patterns of livestock manure nutrient production in the conterminous United States from 1930 to 2012. Sci. Total Environ. 541, 1592–1602 (2016).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar 

  • Cordell, D., Drangert, J.-O. & White, S. The story of phosphorus: global food security and food for thought. Glob. Environ. Change 19, 292–305 (2009).

    Article 

    Google Scholar 

  • Van Kauwenbergh, S. J. World Phosphate Rock Reserves and Resources (IFDC, 2010).

  • Edixhoven, J. D., Gupta, J. & Savenije, H. H. G. Recent revisions of phosphate rock reserves and resources: a critique. Earth Syst. Dyn. 5, 491–507 (2014).

    Article 
    ADS 

    Google Scholar 

  • Bouwman, L. et al. Exploring global changes in nitrogen and phosphorus cycles in agriculture induced by livestock production over the 1900–2050 period. Proc. Natl Acad. Sci. USA 110, 20882–20887 (2013).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar 

  • McDowell, R. W., Rotz, C. A., Oenema, J. & Macintosh, K. A. Limiting grazing periods combined with proper housing can reduce nutrient losses from dairy systems. Nat. Food 3, 1065–1074 (2022).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Dunnett, A. et al. Multi-objective land use allocation modelling for prioritizing climate-smart agricultural interventions. Ecol. Model. 381, 23–35 (2018).

    Article 

    Google Scholar 

  • Ockenden, M. C. et al. Major agricultural changes required to mitigate phosphorus losses under climate change. Nat. Commun. 8, 161 (2017).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • McDowell, R. W., Noble, A., Pletnyakov, P. & Mosley, L. Global Database of Riverine Nitrogen and Phosphorus Loads and Yields (Lincoln Univ., 2020); https://doi.org/10.25400/lincolnuninz.11894697

  • Spiegal, S. et al. Manuresheds: advancing nutrient recycling in US agriculture. Agric. Syst. 182, 102813 (2020).

    Article 

    Google Scholar 

  • Steinfurth, K. et al. Thresholds of target phosphorus fertility classes in European fertilizer recommendations in relation to critical soil test phosphorus values derived from the analysis of 55 European long-term field experiments. Agric. Ecosyst. Environ. 332, 107926 (2022).

    Article 
    CAS 

    Google Scholar 

  • Zhao, C. et al. Temperature increase reduces global yields of major crops in four independent estimates. Proc. Natl Acad. Sci. USA 114, 9326–9331 (2017).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Gisbert-Queral, M. et al. Climate impacts and adaptation in US dairy systems 1981–2018. Nat. Food 2, 894–901 (2021).

    Article 
    PubMed 

    Google Scholar 

  • Mou, X. M. et al. Soil phosphorus accumulation changes with decreasing temperature along a 2300 m altitude gradient. Agric. Ecosyst. Environ. 301, 107050 (2020).

    Article 
    CAS 

    Google Scholar 

  • Minoli, S., Jägermeyr, J., Asseng, S., Urfels, A. & Müller, C. Global crop yields can be lifted by timely adaptation of growing periods to climate change. Nat. Commun. 13, 7079 (2022).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Jägermeyr, J. et al. Climate impacts on global agriculture emerge earlier in new generation of climate and crop models. Nat. Food 2, 873–885 (2021).

    Article 
    PubMed 

    Google Scholar 

  • Syers, K. J., Johnston, E. R., Curtin, D., Gilkes, R. J. & Prakongkep, N. A new perspective on the efficiency of phosphorus fertilizer use. In Proc. 19th World Congress of Soil Science, Soil Solutions for a Changing World (eds Gilkes D. & Prakongkep, N.) 172 – 175 (International Union of Soil Sciences, 2010).

  • Dhillon, J., Torres, G., Driver, E., Figueiredo, B. & Raun, W. R. World phosphorus use efficiency in cereal crops. Agron. J. 109, 1670–1677 (2017).

    Article 
    CAS 

    Google Scholar 

  • Heuer, S. et al. Improving phosphorus use efficiency: a complex trait with emerging opportunities. Plant J. 90, 868–885 (2017).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Pang, J., Ryan, M. H., Lambers, H. & Siddique, K. H. M. Phosphorus acquisition and utilisation in crop legumes under global change. Curr. Opin. Plant Biol. 45, 248–254 (2018).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Olsen, S. R., Cole, C. V., Watanbe, F. S. & Dean, L. A. Estimation of Available Phosphorus in Soils by Extraction with Sodium Bicarbonate Circular No. 939 (United States Department of Agriculture, 1954).

  • FAOSTAT: Value of Agricultural Production (Food and Agriculture Organization, 2020); http://www.fao.org/faostat/en/#data/QV

  • Johnston, A. E., Poulton, P. R., Fixen, P. E. & Curtin, D. in Advances in Agronomy Vol. 123 (ed. Sparks, D. L.) 177–228 (Academic Press, 2014).

  • Morton, J., Stafford, A. & Roberts, A. Fertiliser Use on New Zealand Forage Crops (Fertiliser Association of New Zealand, 2017).

  • Global Food Security-Support Analysis Data 30 Meter (GFSAD30) Cropland Extent (US Department of the Interior & NASA, 2017); https://lpdaac.usgs.gov/news/release-of-gfsad-30-meter-cropland-extent-products/

  • Edmeades, D. C., Metherell, A. K., Waller, J. E., Roberts, A. H. C. & Morton, J. D. Defining the relationships between pasture production and soil P and the development of a dynamic P model for New Zealand pastures: a review of recent developments. N. Z. J. Agric. Res. 49, 207–222 (2006).

    Article 
    CAS 

    Google Scholar 

  • Singh, M., Reddy, K. S., Singh, V. P. & Rupa, T. R. Phosphorus availability to rice (Oriza sativa L.)–wheat (Triticum estivum L.) in a Vertisol after eight years of inorganic and organic fertilizer additions. Bioresour. Technol. 98, 1474–1481 (2007).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Johnston, M. A., Miles, N. & Thibaud, G. R. Quantities of phosphorus fertilizer required to raise the soil test value. S. Afr. J. Plant Soil 8, 17–21 (1991).

    Article 
    CAS 

    Google Scholar 

  • Shepherd, M. A. & Withers, P. J. Applications of poultry litter and triple superphosphate fertilizer to a sandy soil: effects on soil phosphorus status and profile distribution. Nutr. Cycling Agroecosyst. 54, 233–242 (1999).

    Article 

    Google Scholar 

  • Roberts, A. H. C. & Morton, J. D. Fertiliser Use on New Zealand Dairy Farms (New Zealand Fertiliser Manufacturers’ Research Association, 2009).

  • Burkitt, L. L., Gourley, C. J. P., Sale, P. W. G., Uren, N. C. & Hannah, M. C. Factors affecting the change in extractable phosphorus following the application of phosphatic fertiliser on pasture soils in southern Victoria. Soil Res. 39, 759–771 (2001).

    Article 
    CAS 

    Google Scholar 

  • Burkitt, L. L., Gourley, C. J. P., Hannah, M. C. & Sale, P. W. G. Assessing alternative approaches to predicting soil phosphorus sorption. Soil Use Manage. 22, 325–333 (2006).

    Article 

    Google Scholar 

  • O’Connor, M. B., Longhurst, R. D., Johnston, T. J. M. & Portegys, F. N. Fertilizer requirements for peat soils in the Waikato region. Proc. N. Z. Grass. Assoc. 63, 47–51 (2001).

    Google Scholar 

  • Kuehne, G. et al. Predicting farmer uptake of new agricultural practices: a tool for research, extension and policy. Agric. Syst. 156, 115–125 (2017).

    Article 

    Google Scholar 

  • McDowell, R. W., Pletnyakov, P. & Haygarth, P. M. Data for ‘Phosphorus applications adjusted to optimal crop yields can help sustain global phosphorus reserves’. Figshare (2024).

  • More Reading

    Post navigation

    Leave a Comment

    Leave a Reply

    Your email address will not be published. Required fields are marked *