Elser, J. J. & Haygarth, P. M. Phosphorus: Past and Future (Oxford Univ. Press, 2020).
Lee, R. The outlook for population growth. Science 333, 569–573 (2011).
Google Scholar
Mogollón, J. M. et al. More efficient phosphorus use can avoid cropland expansion. Nat. Food 2, 509–518 (2021).
Google Scholar
Haygarth, P. M. & Rufino, M. C. Local solutions to global phosphorus imbalances. Nat. Food 2, 459–460 (2021).
Google Scholar
Mueller, N. D. et al. Closing yield gaps through nutrient and water management. Nature 490, 254–257 (2012).
Google Scholar
Lun, F. et al. Global and regional phosphorus budgets in agricultural systems and their implications for phosphorus-use efficiency. Earth Syst. Sci. Data 10, 1–18 (2018).
Google Scholar
MacDonald, G. K., Bennett, E. M., Potter, P. A. & Ramankutty, N. Agronomic phosphorus imbalances across the world’s croplands. Proc. Natl Acad. Sci. USA 108, 3086–3091 (2011).
Google Scholar
Sattari, S. Z., Bouwman, A. F., Martinez Rodríguez, R., Beusen, A. H. W. & van Ittersum, M. K. Negative global phosphorus budgets challenge sustainable intensification of grasslands. Nat. Commun. 7, 10696 (2016).
Google Scholar
Bouwman, A. F. et al. Lessons from temporal and spatial patterns in global use of N and P fertilizer on cropland. Sci. Rep. 7, 40366 (2017).
Google Scholar
Hengl, T. et al. Soil nutrient maps of sub-Saharan Africa: assessment of soil nutrient content at 250 m spatial resolution using machine learning. Nutr. Cycling Agroecosyst. 109, 77–102 (2017).
Google Scholar
Ballabio, C. et al. Mapping LUCAS topsoil chemical properties at European scale using Gaussian process regression. Geoderma 355, 113912 (2019).
Google Scholar
He, X. et al. Global patterns and drivers of soil total phosphorus concentration. Earth Syst. Sci. Data Discuss. 13, 5831–5846 (2021).
Google Scholar
Hou, E., Tan, X., Heenan, M. & Wen, D. A global dataset of plant available and unavailable phosphorus in natural soils derived by Hedley method. Sci. Data 5, 180166 (2018).
Google Scholar
Zhang, J. et al. Spatiotemporal dynamics of soil phosphorus and crop uptake in global cropland during the 20th century. Biogeosciences 14, 2055–2068 (2017).
Google Scholar
Ringeval, B. et al. Phosphorus in agricultural soils: drivers of its distribution at the global scale. Glob. Change Biol. 23, 3418–3432 (2017).
Google Scholar
Sattari, S. Z., Bouwman, A. F., Giller, K. E. & van Ittersum, M. K. Residual soil phosphorus as the missing piece in the global phosphorus crisis puzzle. Proc. Natl Acad. Sci. USA 109, 6348–6353 (2012).
Google Scholar
Alewell, C. et al. Global phosphorus shortage will be aggravated by soil erosion. Nat. Commun. 11, 4546 (2020).
Google Scholar
Grogan, D., Frolking, S., Wisser, D., Prusevich, A. & Glidden, S. Global gridded crop harvested area, production, yield, and monthly physical area data circa 2015. Sci. Data 9, 15 (2022).
Google Scholar
Land Cover 2010 (European Space Agency, 2014); https://www.esa.int/ESA_Multimedia/Images/2014/10/Land_cover_2010
McDowell, R. W., Noble, A., Pletnyakov, P. & Haygarth, P. M. A global database of soil plant available phosphorus. Sci. Data 10, 125 (2023).
Google Scholar
Daneshgar, S., Callegari, A., Capodaglio, A. G. & Vaccari, D. The potential phosphorus crisis: resource conservation and possible escape technologies: a review. Resources 7, 37 (2018).
Google Scholar
Nedelciu, C. E., Ragnarsdottir, K. V., Schlyter, P. & Stjernquist, I. Global phosphorus supply chain dynamics: assessing regional impact to 2050. Glob. Food Sec. 26, 100426 (2020).
Google Scholar
Scholz, R. W. & Wellmer, F. W. Endangering the integrity of science by misusing unvalidated models and untested assumptions as facts: general considerations and the mineral and phosphorus scarcity fallacy. Sustain. Sci. 16, 2069–2086 (2021).
Google Scholar
Lu, C. & Tian, H. Global nitrogen and phosphorus fertilizer use for agriculture production in the past half century: shifted hot spots and nutrient imbalance. Earth Syst. Sci. Data 9, 181–192 (2017).
Google Scholar
Mineral Commodity Summaries, January 2021: Phosphate Rock 122–123 (US Geological Survey, 2021).
Robinson, T. P. et al. Mapping the global distribution of livestock. PLoS ONE 9, e96084 (2014).
Google Scholar
Monfreda, C., Ramankutty, N. & Foley, J. A. Farming the planet: 2. Geographic distribution of crop areas, yields, physiological types, and net primary production in the year 2000. Glob. Biogeochem. Cycles 22, GB1022 (2008).
Batjes, N. H. Global Distribution of Soil Phosphorus Retention Potential (ISRIC Wageningen, 2011).
Ros, M. B. H. et al. Towards optimal use of phosphorus fertiliser. Sci. Rep. 10, 17804 (2020).
Google Scholar
Roy, E. D. et al. The phosphorus cost of agricultural intensification in the tropics. Nat. Plants 2, 16043 (2016).
Google Scholar
Kok, D. J. D. et al. Global phosphorus recovery from wastewater for agricultural reuse. Hydrol. Earth Syst. Sci. 22, 5781–5799 (2018).
Google Scholar
Yang, Q. et al. Spatiotemporal patterns of livestock manure nutrient production in the conterminous United States from 1930 to 2012. Sci. Total Environ. 541, 1592–1602 (2016).
Google Scholar
Cordell, D., Drangert, J.-O. & White, S. The story of phosphorus: global food security and food for thought. Glob. Environ. Change 19, 292–305 (2009).
Google Scholar
Van Kauwenbergh, S. J. World Phosphate Rock Reserves and Resources (IFDC, 2010).
Edixhoven, J. D., Gupta, J. & Savenije, H. H. G. Recent revisions of phosphate rock reserves and resources: a critique. Earth Syst. Dyn. 5, 491–507 (2014).
Google Scholar
Bouwman, L. et al. Exploring global changes in nitrogen and phosphorus cycles in agriculture induced by livestock production over the 1900–2050 period. Proc. Natl Acad. Sci. USA 110, 20882–20887 (2013).
Google Scholar
McDowell, R. W., Rotz, C. A., Oenema, J. & Macintosh, K. A. Limiting grazing periods combined with proper housing can reduce nutrient losses from dairy systems. Nat. Food 3, 1065–1074 (2022).
Google Scholar
Dunnett, A. et al. Multi-objective land use allocation modelling for prioritizing climate-smart agricultural interventions. Ecol. Model. 381, 23–35 (2018).
Google Scholar
Ockenden, M. C. et al. Major agricultural changes required to mitigate phosphorus losses under climate change. Nat. Commun. 8, 161 (2017).
Google Scholar
McDowell, R. W., Noble, A., Pletnyakov, P. & Mosley, L. Global Database of Riverine Nitrogen and Phosphorus Loads and Yields (Lincoln Univ., 2020); https://doi.org/10.25400/lincolnuninz.11894697
Spiegal, S. et al. Manuresheds: advancing nutrient recycling in US agriculture. Agric. Syst. 182, 102813 (2020).
Google Scholar
Steinfurth, K. et al. Thresholds of target phosphorus fertility classes in European fertilizer recommendations in relation to critical soil test phosphorus values derived from the analysis of 55 European long-term field experiments. Agric. Ecosyst. Environ. 332, 107926 (2022).
Google Scholar
Zhao, C. et al. Temperature increase reduces global yields of major crops in four independent estimates. Proc. Natl Acad. Sci. USA 114, 9326–9331 (2017).
Google Scholar
Gisbert-Queral, M. et al. Climate impacts and adaptation in US dairy systems 1981–2018. Nat. Food 2, 894–901 (2021).
Google Scholar
Mou, X. M. et al. Soil phosphorus accumulation changes with decreasing temperature along a 2300 m altitude gradient. Agric. Ecosyst. Environ. 301, 107050 (2020).
Google Scholar
Minoli, S., Jägermeyr, J., Asseng, S., Urfels, A. & Müller, C. Global crop yields can be lifted by timely adaptation of growing periods to climate change. Nat. Commun. 13, 7079 (2022).
Google Scholar
Jägermeyr, J. et al. Climate impacts on global agriculture emerge earlier in new generation of climate and crop models. Nat. Food 2, 873–885 (2021).
Google Scholar
Syers, K. J., Johnston, E. R., Curtin, D., Gilkes, R. J. & Prakongkep, N. A new perspective on the efficiency of phosphorus fertilizer use. In Proc. 19th World Congress of Soil Science, Soil Solutions for a Changing World (eds Gilkes D. & Prakongkep, N.) 172 – 175 (International Union of Soil Sciences, 2010).
Dhillon, J., Torres, G., Driver, E., Figueiredo, B. & Raun, W. R. World phosphorus use efficiency in cereal crops. Agron. J. 109, 1670–1677 (2017).
Google Scholar
Heuer, S. et al. Improving phosphorus use efficiency: a complex trait with emerging opportunities. Plant J. 90, 868–885 (2017).
Google Scholar
Pang, J., Ryan, M. H., Lambers, H. & Siddique, K. H. M. Phosphorus acquisition and utilisation in crop legumes under global change. Curr. Opin. Plant Biol. 45, 248–254 (2018).
Google Scholar
Olsen, S. R., Cole, C. V., Watanbe, F. S. & Dean, L. A. Estimation of Available Phosphorus in Soils by Extraction with Sodium Bicarbonate Circular No. 939 (United States Department of Agriculture, 1954).
FAOSTAT: Value of Agricultural Production (Food and Agriculture Organization, 2020); http://www.fao.org/faostat/en/#data/QV
Johnston, A. E., Poulton, P. R., Fixen, P. E. & Curtin, D. in Advances in Agronomy Vol. 123 (ed. Sparks, D. L.) 177–228 (Academic Press, 2014).
Morton, J., Stafford, A. & Roberts, A. Fertiliser Use on New Zealand Forage Crops (Fertiliser Association of New Zealand, 2017).
Global Food Security-Support Analysis Data 30 Meter (GFSAD30) Cropland Extent (US Department of the Interior & NASA, 2017); https://lpdaac.usgs.gov/news/release-of-gfsad-30-meter-cropland-extent-products/
Edmeades, D. C., Metherell, A. K., Waller, J. E., Roberts, A. H. C. & Morton, J. D. Defining the relationships between pasture production and soil P and the development of a dynamic P model for New Zealand pastures: a review of recent developments. N. Z. J. Agric. Res. 49, 207–222 (2006).
Google Scholar
Singh, M., Reddy, K. S., Singh, V. P. & Rupa, T. R. Phosphorus availability to rice (Oriza sativa L.)–wheat (Triticum estivum L.) in a Vertisol after eight years of inorganic and organic fertilizer additions. Bioresour. Technol. 98, 1474–1481 (2007).
Google Scholar
Johnston, M. A., Miles, N. & Thibaud, G. R. Quantities of phosphorus fertilizer required to raise the soil test value. S. Afr. J. Plant Soil 8, 17–21 (1991).
Google Scholar
Shepherd, M. A. & Withers, P. J. Applications of poultry litter and triple superphosphate fertilizer to a sandy soil: effects on soil phosphorus status and profile distribution. Nutr. Cycling Agroecosyst. 54, 233–242 (1999).
Google Scholar
Roberts, A. H. C. & Morton, J. D. Fertiliser Use on New Zealand Dairy Farms (New Zealand Fertiliser Manufacturers’ Research Association, 2009).
Burkitt, L. L., Gourley, C. J. P., Sale, P. W. G., Uren, N. C. & Hannah, M. C. Factors affecting the change in extractable phosphorus following the application of phosphatic fertiliser on pasture soils in southern Victoria. Soil Res. 39, 759–771 (2001).
Google Scholar
Burkitt, L. L., Gourley, C. J. P., Hannah, M. C. & Sale, P. W. G. Assessing alternative approaches to predicting soil phosphorus sorption. Soil Use Manage. 22, 325–333 (2006).
Google Scholar
O’Connor, M. B., Longhurst, R. D., Johnston, T. J. M. & Portegys, F. N. Fertilizer requirements for peat soils in the Waikato region. Proc. N. Z. Grass. Assoc. 63, 47–51 (2001).
Kuehne, G. et al. Predicting farmer uptake of new agricultural practices: a tool for research, extension and policy. Agric. Syst. 156, 115–125 (2017).
Google Scholar
McDowell, R. W., Pletnyakov, P. & Haygarth, P. M. Data for ‘Phosphorus applications adjusted to optimal crop yields can help sustain global phosphorus reserves’. Figshare (2024).
Leave a Comment